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The solution of the Ornstein-Zernike equation with Yukawa closure 
[c(r) = Z~ K~e-~ <T- ~)/r for r > 1] is generalized for an arbitrary number of 
Yukawas, using the Fourier transform technique introduced by Baxter. 
Full equivalence to the results of Waisman, H~ye, and Stell is proved for 
the case of a single Yukawa. Finally, a convenient form of the Laplace 
transform ofg(s) is found, which can be easily inverted to give a stepwise, 
rapidly converging series for g(r). 

KEY W O R D S :  Mean spherical model; simple fluids; Ornstein-Zernike 
equation; Baxter method; generalized mean spherical model, 

1. I N T R O D U C T I O N  

While the theory  o f  simple fluids with spherical potentials is rather well 
developed and little remains to be done  as far as improving the agreement  
with known experiments (real life and computer) ,  it is always interesting to 
be able to condense numerical  results o f  long tables into simple analytical 
expressions that  no t  only are simpler to handle, but  also give physical in- 
sights that  provide a basis for  applications and extensions to more  compli-  
cated systems. 

A result o f  this nature is the solution o f  the mean  spherical approxi- 
mation(l~ for  a Yukawa  tail recently obtained by Waisman,  (2~ which was later 
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made into a rather exact theory for hard-sphere systems by Hoye et al., (a~ the 
generalized mean spherical approximation. Further extensions and appli- 
cations have also been published, (4-8~ which show the potential of this 
approach; a review is given by Stell. (8~ 

The actual detailed solution (2~ was done using the Laplace transform 
technique and was not published in full detail in the literature. What we 
propose to do is to apply a method of  Baxter, (9~ based on the Wiener-Hopf  
factorization of the Fourier transforms of the correlation function, to obtain 
a general solution of the Ornstein-Zernike (OZ) equation with a Yukawa 
closure. 

More precisely, the OZ equation for a one-component fluid with spheric- 
ally symmetric interaction is 

h(r) = c(r) + o f  dr'  c(Ir ' l)h(lr - r ' l)  (1) 

where h(r) = g(r) - 1 and g(r) is the pair correlation function, while c(r) 
(r = lr[) is the direct correlation function. If the molecules have a hard, 
impenetrable core, then we know that 

h(r)= - 1  for r < 1 (2) 

where we have taken the hard core diameter ~ = 1. Now, to be able to solve 
(1), we need to know c(r) for r /> 1. We will call the particular assumption 
that c(r) can be expressed by an arbitrary sum of  Yukawas the "Yukawa 
closure." This means 

c(r) = ~ Kie-~,~r-l~/r for r /> 1 (3) 
i = 1  

Each term in (3) has the form of  a Yukawa potential. When n = 1, 2, we 
recover the cases that were already solved ~2'4-8~ in the literature. However, in 
the case of one Yukawa, we will be able to show that the solution reduces to 
solving a quartic equation, which has an analytic, explicit solution. 

The solution of the stated problem will consist in reducing the integral 
equation (1) with boundary conditions (2) and (3) to a set of n + 2 algebraic 
equations. By letting n -+ 0% we can express any reasonable c(r) in the form 
of Eq. (3), but at the same time, the set of  algebraic equations becomes just 
another integral equation, probably just as hard to deal with as (1). 

The solution of (1) is done by utilizing Baxter's method (9~ to obtain the 
closure (3). By his very elegant method Baxter solved in a rather simple way 
the Percus-Yevick equation for hard-sphere systems, in which the closure is 
simply c(r) = 0 (r > 1). While this gave a much simpler derivation of the 
Wertheim-Thiele (1~ solution, its power became apparent by the generaliza- 
tion of Lebowitz's result m~ for hard-sphere mixtures. r Blum and Tiba- 
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visce r later showed that the Baxter method could be used to rederive the 
mean spherical approximation result for equal-size charged spheres of  
Waisman and Lebowitz ~z4~ in a surprisingly simple manner. The key in- 
gredient to this extension was to postulate a Yukawa closure of the form of 
Eq. (3), and take the limit zz ~ 0 at the end of the calculation. This makes 
the Wiener-Hopf  factorization possible, at the price of  including poles in the 
previously entire Fourier transforms of  c(r). However, this approach proved 
quite powerful, since a number of  interesting systems, such as mixtures of 
charged hard spheres and dipoles of equal ~5~'~ and different ~v sizes, charged 
hard spheres of  different charges and sizes, ~18~ and wall-charged hard 
spheres, ~19~ can be solved analytically. 

2.  M E T H O D  O F  S O L U T I O N  

We take the Fourier transform (which is denoted by a tilde) of  (1) 

h(k) = e(k)  + pE(k)~(k) (4) 

Equation (4) may be written as 

1 - pE(k) = [1 + p,~(k)] -1  = Q ( k ) O ( - k )  (5)  

The (Wiener-Hopf) factorization with the function Q in (5) is the major step 
introduced by Baxter. ~9~ The Q(k) may be written as 

f; Q(k) = 1 - 2rrp dkrQ(r)  dr (6) 

Baxter then shows that Q(r) has the following properties: The Q(r) is a real 
function, and Q(r) = 0  for r < 0. Further, if e ( r ) = O  for r > R, then 
Q(r) = 0 also for r > R. Thus the limits of integration in the one-dimensional 
Fourier transform given by (6) may be put equal to 0 and R, respectively. 
Finally, Q(r) is a continuous function for r > 0. Accordingly, 

Q(R) = 0 (7) 

By this introduction of  Q(r) the original integral equation can be trans- 
formed into <9~ 

re(r) = - Q'(r) + 12~:fo n dt Q' ( t )Q( t  - r) (8) 

- Q'(r)  + 12 f0" dt (r - t)h(lr - t l )Q( t )  (9) yh(?') 

4 Adelman and Deutch ~16~ solved the problem simultaneously, but using the Laplace 
transform technique. While the results seem to agree to lowest order in electrolyte 
concentration, it is still an open question to show that they are totally equivalent. 
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where Q'(r) means the derivative of Q(r) with respect to r, while ~: = (~r/6)p. 
Equation (9) is a new integral equation, which, when solved, also gives c(r) 
as given by (8). One advantage of (9) compared to (1) is that it is one dimen- 
sional instead of three dimensional. The second very great advantage of (9) 
is that here the special condition given by (2), namely that h(r) = - 1  = 

const for r < 1, can be utilized in a very profitable fashion, as we shall see. 
In this way one immediately gets the Percus-Yevick solution for hard spheres 
[c(r) = 0 for r > 1 ]. Then R = 1, and (9) needs to be considered only for 
r < R = 1, so h(r) is involved only for r < 1. One then easily sees that 
[using (7)] 

O(r) = �89 2 + br - (�89 + b) (10) 

where a and b are found by insertion into (9), thus leading to the full solution 
of this problem. 

However, in other problems, when R > 1, Eq. (9) again may look 
almost as difficult to solve as the original equation. Fortunately this is not as 
bad as it first appears, since we can profit somewhat from the knowledge of 
c(r) for r > 1 as given by (3). The reason for this is that the form of Q(r) 
for r > 1 is fully determined from (3). 

Assume first that (3) holds for all r (>  0). By Fourier transformations 
and by contour integration (13~ (in both one and three dimensions), or most 
easily by use of (8), one then finds that Q(r) must be of the form 

Therefore 

where 

Q(r) = ~ ,  d~e-~, T (r > 0) (11) 

Q(r) = Qo(r) + ~_, d~e -~'r (r > O) (12) 

Qo(r) = 0  for r > 1 (13) 

and due to the condition of continuity 

O0(1) = 0 (14) 

By study of Eq. (8) for r > 1 one finds that, with Q(r) given by (12), the 
c(r) will still be of the form given by (3), although the connection between the 
K~ and d~ will change. This connection is given by Eqs. (27) and (28). Accord- 
ingly, the Q(r) that solves our problem can be written in the form given by 
(12), and then Eq. (9) with condition (2) again is very advantageous. One 
then sees that the Qo(r) will contain the terms given by (10) plus terms where 
the e-~, r is involved. We find by use of (14) 

Qo(r) = �89 2 - 1) + b(r - 1) + ~ c,(e -z,r - e -z,) (15) 
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We now have to use Eq. (9) to determine the coefficients of (15). It is then 
convenient to introduce 

g(r) = h ( r )  + 1 [sog(r)  = 0  for r < 1] (16) 

Equation (9) then transforms into 

rg(r) = r - Q'(r) - 12~:fo ~ (r - t )Q(t)  dt 

+ 12~ ( r -  t ) g ( ] r -  t ] )Q( t )d t  (17) 

The limit of  integration here means R = 1 for the part of  Q(r) that is Qo(r) 
and R = Go for the rest. The Q(r) as given by (12) and (15) is then put into 
(17). For r < 1 one then finds 

= r - ar - b + ~ ,  z~(c, + d~)e-~, r - 12~:r[ka + �89 0 

-- (�89 + b + ~ c,e -~,) + ~ ,  c,(1/z,)(1 - e-Z,) + ~ d,(1/z,)] 
L 

,(1 ) + 12~{~a + ~b - : : a  + b + ~ ,  c~e -~, + ~ ,  c~(1/z?)[1 - (t + z j e - q  

+ ~ d,(1/z?)} - 12~ ~ d,e-a,r~,(zi) (18) 

Here ~(z~) is the Laplace transform, 

f; ~(s) = rg(r)e-*" dr (19) 

From (18) one immediately gets the following equations by equating terms 
with equal r dependence: 

{ 1 --61 c~7~2[ 1 '[l+Z'z~ ~ b = b + 2 - 

(20a) 

1 ] (20b) +  d,7, 
(20c) 

1 - a = 1 2 ~  - a - ~ b +  ~ ,  e -K, 

z,(c, + d,) = 12~d,~(z,) 

The remaining obstacle to solving the integral equation as given by 
(I)-(3) is that we need some expression for ~(z0 [apart from the relation 
given by (20c)]. This we can obtain by taking the Laplace transform of (17). 
The Laplace transformation can be simplified by noting that since (18) 
holds for r < 1, it also holds for r > 1. Therefore we can subtract (18) from 
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(17) and then take the transform of the difference (which is different from 
zero for r > 1). One then notes that the latter integral of (17) will be the 
latter term of (18) for any r if the lower limit of integration, which is zero, 
is replaced by r. So for the difference we then find (r > 1) 

f2 rg(r )  = ar + b - ~ zic~e-~, T + 12~: (r - t ) g ( l r  - t l ) Q ( t )  d t  (21) 

The integral in (21) is just the convolution integral by Laplace transform, so 
from this we find 

e -~, e -s  + 1 2 ~ , ( s ) q ( s )  (22) 

o r  

where 

~(s )  = { ( 1 / s 2 ) [ a ( s +  1) + bs]  - ~ . [ z i cJ ( z ,  + s )]e-~ ,}e  -s  (23) 
1 - 12~q(s) 

q(s )  = Q ( t ) e - s t  

1 b 1 ~( s ) = a -~ + -~ 

dt  = a(s )  - r ( s ) e  -s  

- a + b + ~ _ , c , e  ~, s + ~ ( c ' +  , ) z ~  (24) 

1 1_~ z, 
+ b ~  s --  ~ c~ e -  zi 

From this one sees that ~(s) also may be written as 

~,(s) = s~r(s)e-S/[1 - 12~q(s)] (25) 

We observe, in passing, that (25) gives an explicit form of the binary corre- 
lation function ~(s). A stripwise Laplace inversion can be easily achieved by 
expanding the e -s term in q(s ) .  

By putting s = z~, (25) gives the desired equations. Solution of Eqs. 
(20) and (25) then leads to the solution of the Ornstein-Zernike equation 
with the conditions (2) and (3). To complete the solution, we also need the 
connection between the parameters K~ in (3) and the a, b, c~, and d~. We will 
find it by investigating the direct correlation function c(r) .  

3. THE D IRECT C O R R E L A T I O N  F U N C T I O N  c(r) 

We now will compute the form of c(r )  and establish the connection 
between parameters in c(r )  and Q(r) .  It is then probably most simple to 
compute c(r)  by use of Eq. (8) with Q ( r )  given by (12) and (15). For r < 1 
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the computation is somewhat tedious, as the integrand will consist of many 
terms that have to be integrated separately. Further, to bring c(r) into the 
desired form, Eqs. (20) and (25) also have to be used. We will then find 
[Eq. (36)] that c(r) has a form that generalizes the form found by Waisman 
when solving for one and two Yukawa terms. We find (r < 1) 

f) -rc(r)  = Qo'(r) - ~,  z~d~e -z'r - 12~: Qo'(t)Q(t - r) dt 

+ 12~ ~ z,d~e-",tQ(t - r) dt (26) 

For r > 1 it is easy to find c(r). In that case (26) reduces to [since Qo(r) = 0 
f o r r  > 1] 

rc(r) = ~ z,d,[1 - 12~q(z,)]e -e,r (27) 

where q(s) is given by (24). This establishes the relation to the coefficients 
of Eq. (3), 

K, eh = z,6[1 -- 12~q(z,)] (28) 

For r < 1 we find by a more tedious computation 

-rc(r)  + K,e~,e-~, r 

= b - 12~ - ~  �89 + b + ~ ,  c,e -~, - ~ ,  (c, + 4 )  

+ ~ z,(c~ + d,)cr(z,) + ~ z,c,e-Z,'r(z~)} 

+ { a - 1 2 ~ a [ - � 8 9 1 8 9  ~ [(l + z,)/z, lc,e -~' 

+ ~ O/z,)(c, + 4)]}r 

12~:[~ Z~(C~-t- dO'r(zi)e-Z,e z,r] - ~ zic~[1- 12~a(z~)]e -z,r (29) + 

The e(z~) and ~-(z0 are given by Eq. (24). To go further with expression 
(29), we have to utilize Eqs. (20) and (25). Consider first Eq. (8) for r = 0. 
In this case the computations are very simple, resulting 

-rc(r)]r=o = Q'(O) + 6~[Q(0)] 2 

= b - ~,  z,(c, + 4 )  + 6~ �89 + b + ~,  c,e -~, - ~,  (c, + a,) (3o) 
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One sees that result (29) from the more tedious computation agrees with this 
when Eq. (28) is used for K~e ~, and Eq. (24) for q(zO. Now rc(r)  should be 
zero for r = 0, as one expects c(0) to be finite. From Eq. (30) this is not 
automatically fulfilled. As this does not hold for general a, b, c~, and d~, one 
instead will expect it to hold when these coefficients are found from Eqs. (20) 
and (25). Therefore, we will try to find a combination of these that results in 
expression (30). By use of  (25), Eq. (20c) may be transformed into 

c~ + d~ = 12~[~(z,)(c~ + d 0 - r(z~)cie-~] (31) 

To find the proper combination, we now have to do the following: 
Multiply Eq. (20a) with a, multiply Eq. (20b) with b, and multiply Eq. (31) 
with -z~. Then add these equations together. The result is 

b -  ~ z~(c~ + dO = - 6 ~  �89 + b + ~ , c , e  -~, - ~ (c, + dO (32) 

From this one sees that - r e ( r )  = 0 for r = 0, as it should. 
By use of  Eq. (20b) one sees that the coefficient of  the r term of (29) is 

the same as a 2. To investigate the e~ r and e-~, ~ terms, let us introduce 

= 24~K~e~ f rg ( r )e -~r  dr = 24~K~e~g(zO (33) Vt 

One then finds by use of  (20c), (25), and (28) 

�88 / K~e~z, 2 = (1/ 4z~2)K~e~[Z 4~,  (zO ] 2 

= 12~r(zOe-~,[lZ(~,(zO/z,]d~ 

= 12~:(c~ + dOr(zOe -~, (34) 

K~e~,[1 - (v~/2K~e~,z,)] 2 = K~e~,{1 - [12r 2 

= z~d~[1 - 12~:e(z0]{1 - [12s163 

= -z~c~[1 - 12s (35) 

One sees that (34) and (35) are the coefficients of  the e~ r and e - ~  ~ terms of 
(29). Accordingly, e(r)  may be written for r < 1 as 

- r e ( r )  = aor + bor 2 + �89 ~ ,  (vi2/4K~e~'z~2)(e ~'~ - 1) 

+ ~,  K~e~,{[1 - (vJ2Kie",zO] 2 - 1}(e-~ ' - 1) 

= aor + bor 2 + �89 4 + ~ (vdzO(1 - e-~'O 

+ ~ {v~2[cosh(z~r) - 1]/2K~e~z~ ~} (36) 
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Here 

a0 = a 2 ;  b0 = -12~:[�89 + b)2 + a~cie-Z,] (37) 

The a 2 can be given a direct physical interpretation. From Eqs. (6), (20b), 
and (24) [Eq. (20b) is the same as the coefficient of the r term of (17)] 

Q(0) = 1 - 12~:q(0) = a (38) 

So from Eq. (5) 

1 - p ? ( 0 )  = 0 ( 0 ) Q ( 0 )  = a 2 = ao  ( 3 9 )  

From (39) one sees that ao = a 2 is the same as the inverse compressi- 
bility if the equation of state is computed via the fluctuation theorem. Now 
one sees that the c(r) as given by (36) is exactly the same as found by Wais- 
man by his method to solve the Ornstein-Zernike equation for one and two 
Yukawas, where v, and a are defined by (33) and (39). Equation (36) general- 
izes the form of c(r) for one and two Yukawas to an arbitrary number of 
Yukawa terms. 

4. C O M P A R I S O N  W I T H  EARLIER S O L U T I O N  

The cases with one and two Yukawas have been solved by Waisman (2'4~ 
by a quite different method, leading to solutions with c(r) as given by (36), 
but with completely different algebraic equations. These solutions were 
simplified by Hoye et al. (5-7~ as part of a general investigation of the OZ 
equation. We would like to show the equivalence between these earlier 
solutions and the solutions found here. In a preceding section we have 
already shown that the form of the c(r) agrees in full, but we have not shown 
that the determination of  its coefficients gives the same result. 

Here we will not try to do this explicitly for the two-Yukawa case, since, 
as far as we can see, this will be a rather tedious computation. However, we 
will indicate that it should be possible to perform such a comparison ex- 
plicitly in the two-Yukawa case, too. This is based upon the observation that 
Eqs. (20) and (25) form a set of linear equations if the a, b, c~, and d~ are all 
considered as unknown while the ~(z~) (besides z~ and ~:) are considered as the 
known quantities. This means that the equations can be solved explicitly with 
respect to a, b, c~, and d~ in terms of~(z0, giving a unique solution. (However, 
when other quantities, e.g., Ki, are considered known, then the resulting 
equations are no longer linear, and multiple solutions will occur, of which 
only one is acceptable.) Despite its complexity, the earlier solution also turns 
out to form a set of linear equations for a certain combination of variables. (5~ 
The resulting equations, Eqs. (30)-(32) of  Ref. 5, are linear in A, U0, and /4/o 
and are thus solvable with respect to these variables when $1 = U1/Uo and 
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$2 = W 1 / W o  (besides z~ and ~) are considered known. The resulting solu- 
tions can be compared since A, Uo, and Wo can be expressed explicitly in 
terms of  a, b, c~, d~, and ~(z0 (via K,) and $1 and $2 can be expressed ex- 
plicitly in terms of ~(z0 alone. (a~ 

Now we turn to the one-Yukawa case, for which we will perform the 
comparison in a way different from the one outlined above. For  given/(1,  
zl, and f we need three independent equations to determine ao, bo, and vl. 
One of those is Eq. (39). Accordingly, we have to show the equivalence of  
two additional equations. This may be performed in the following way 
(zi, ci, d~ -+ z, c, d): One equation in the earlier solution to compare with is 
Eq. (2.30) of  Ref. 6: 

(uo + A - p ) ( U o  + A) - �88 - A) + z,41~(Vo + A - p )  = 0 (4O) 

where from Eqs. (2.9) and (2.22) of  Ref. 6 (Uo = Uo + u) 

p = [(1 - 2~)/(1 - ~)]2, A = (1-~:)2a2, 6~:yo= U0 + A -  1 (41) 

The Y0 is the contact value Yo = g(1 +).  (Note that a 2 is the same as the a of 
Ref. 6.) In terms of  a and Yo, Eq. (40) reads 

36~:2yo 2 + 6 ~ 1 -  8 ~ - 2 ~  :z 1 +�89 1 2(1 +2~:) 2 
(1 - ~)2 Yo - 6~: (1 - ~)-------~ ~ z ~1 Z 

1 2 !. 
+ ~ z (1 - ~)2aZ + @z(1 - ~)ayo - @ z a  1 + �89 --- 0 (42) 

Then we turn to the equations found here. First we eliminate b by 
introducing Yo. Due to the continuity of h(r) - c(r)  at r = 1 [which is 
obvious from (1)] the Yo is also the same as the discontinuity of c(r)  at r = 1, 
which from (8) again must be equal to the discontinuity of Q'(r)  or Qo'(r) 

at r = 1. So 

yo = Q ' ( 1 - )  - Q ' ( I + )  = a + b - zce  -~ (43) 

By this elimination of  b, Eqs. (20a) and (20b) read 

12~(1/z2)[e + d -  (1 + z + �89 -~] - (1 + 2~)zce -~ 

= (1 - 2~)yo - (1 + �89 - 12~(I/z)[e + d - (1 + z + �89 -~] 

= -6~:yo + (1 - 2~)a - 1 (44) 

By solution of these equations with respect to c and d one finds 

�89 + b + ce -~ - (c + d)  

= - �89  + Yo + [e(1 + z)e -~ - (e + d)l 

= [1/12~:(1 + 2~:)][12~(1 - r + (1 - ~)2za - (1 + 2~)z - 6r (45) 
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and 

b - z(c + d)  = yo - a + z[(l  + z)ce -~ - (c + d ) ] - z 2 c e  -~ 

1 - 4 ~  1 - ~  1 1 - ~  
= i +2~Y~ 2(1 +2~)za 1 +2~ +(1 +2~zY~ 

z 2 z 
+ (1 - ~)2 z2a (46) 

12~(1 + 2~) 12~ 2(1 + 2~) 

When Eqs. (45) and (46) are used in Eq. (32) one obtains Eq. (42), as 
we wanted to show. 

To show full equivalence, we need another equation, too, as argued 
above. This can be obtained as follows: We need the derivative to contact 
Yl  = (d/dr)[rg(r)]lr=l+. From (1) one can conclude that h'(r)  - c '(r) as well 
as h(r)  - e(r)  is continuous at r = 1. Therefore 

d I d [re(r)] r=l-  (47) Yz = -d7 [rc(r ) ] r= 1 + dr 

The Y1 can then be obtained by differentiation of Eq. (8): 

Yl = Q " ( I - ) -  Q " ( I + ) +  12~:Q(0) [Q ' ( t - ) -  Q ' ( I+)]  

= a + z2ce -~ + 12~:y0[c + d -  ( l a  + b + ce -O]  (48) 

We obtain the desired equation from Ref. 6 by using its Eqs. (2.24) and 
(2.26) together with Eqs. (2.9) and (2.30) to eliminate U~ = ul + u and 
l z 2 ( p  - A) .  This gives with use of Eq. (41) 

1 
3~:y~ = (2 -- ~r + Uo) - 1 - ~ [(Uo + A - p)(Uo + A + �89 

1 -2~ 6~: @Yo + 3~: 
- 1 + _o (6~Y~ + 1 ~  1 + 2----~ 

[(1 _~:)z 6~:yo 1 + �89 (49) 
2(1 ~- 2~) 1 + 2~: 

One finds that Eq. (48) is identical to this when b, c, and d are eliminated by 
use of  (45) and (46). Thus we can conclude that the solution of  the OZ equa- 
tion is the same for one Yukawa whether it is solved by Waisman's method or 
via the extension of Baxter's method used here. 

5, A SPECIAL SOLUTION IN THE O N E - Y U K A W A  CASE 

Let us finally consider a special explicit solution in the case of one 
Yukawa; e.g., when the solution of the Ornstein-Zernike equation is used in 
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the mean spherical approximation one will consider ~, z, and K as known 
quantities and solve for the others. In this case the term (z = za) 

), = 12~ , ( z ) / z  (50) 

will be proportional to, and thus correspond to, the internal energy. We will 
here find a quartic equation for ~,. This quartic equation does have an explicit 
solution for ~(z) or ~,, which can be obtained by reducing it first to a cubic 
equation and then solving a set of two quadratic equations, (2~ or else solving 
numerically on a digital computer. Among the four solutions one has to 
choose the physically acceptable one. 

As mentioned previously, our Eqs. (20) and (25) are linear and are thus 
explicitly solvable in analytic form when a, b, c,, and d~ are considered as 
unknown. So our method of solution will be to solve Eqs. (20) and (25) for 
a, b, c, and d (c --- c~, d = d l ) .  This solution is then used to eliminate these 
quantities in Eq. (28), which then gives the sought quartic equation for ~,. 
From (28) it is obvious that solution of the quartic equation may be avoided 
if the ~, can be considered as known and K (=/s as unknown (i.e., in cases 
where K does not have to be fixed to a specific value) since (28) must give 
K explicitly in terms of ),. We do the solution as follows: The c is eliminated 
by means of  Eqs. (20c) and (50), 

c = (y - 1)a (51) 

Next we eliminate a and b by solution of  Eqs. (20a) and (20b) using (51). We 
find 

a + b = ao + bo - d(~'B1 + C le -~ ) ,  a = ao - d(~,B2 + C2e -~) (52) 

where a0 and bo are the coefficients in Eq. (10) for the Percus-Yevick hard- 
core case (i.e., d = 0), 

ao = (1 + 2~:)/(1 - s ao + bo = (1 + �89 - ~)2 (53) 

and the B~ and C~ (i = 1, 2) are coefficients related to them by the equations 

B1 = ( 1 2 ~ / z ) ( - z 2 e - ~ ) [ ~ l ( - z ) ( a o  + bo) + q~2(-z)ao] 

Cze -~ = - B 1  + (12~/z)[ao + bo - (1/z)ao] (54) 

B2 = ( 1 2 ~ / z ) ( -  z2e-  *)[qJl(- z)ao - 4q~2(-z)bo] 

C2e -~ = - B 2  + (12~/z)[ao + (4/z)bol 

where we have used the incomplete gamma functions 

~01(z ) = (l/z2)(1 - z - e-Z), cp2(z ) ---- (l/z3)(1 - z + �89 2 - e -z) (55) 
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Finally, the d is found by solution of Eq. (25) (with s = z), where a, b, c, and 
~, are replaced by expressions (50)-(52). The result, after some computation, 
is 

where 

d = - ( y X t  + Xo)/[72D~. + ~,(D~" + DE) + Do] (56) 

D2 = 12~[~%(z)B2 + q~(z)B~ - (1/2z)(1 - e-Z) 21 

D~' = 12~e-~[~o2(z)C2 + qo~(z)C~ - (1/2z)(2 - e -0]  

D'~ = 12~e-Z[(1/za)(B2 + zB~) + (1/2z)e -z] 

Do = 12~e-2~[(1/za)(C2 + zC~) - (1/2z)] 

)(1 = 1 - 12f[cp2(z)ao + q~(z)(ao + b0)] 

Xo = -12~(e-Z/za)[ao + z(ao + b0)] 

(57) 

By some computation it can be shown that D'~ = DI'  + (12~/z)e -~. When 
this is put into Eq. (28), we get the sought quartic equation for 7, 

Ke ~ = zd[X1 + (~,D2 + D~')d] (58) 

or by use of (56) 

K(e~/z)[~,2D2 + r(Dl '  + DE) + Do] 2 

= 0'2(1 + Xo)[XoO, D2 + DI')  - xIO, D'4 + Do)] (59) 

Besides being a quartic equation in y, Eq. (58) may also be considered as an 
explicit expression for K in terms of ),, as concluded before. It is of interest 
to note that Eq. (25) yields an explicit, rapidly converging, and easy to handle 
zone-by-zone expression for the binary correlation function g(r). This 
expression is in a way the extension of the explicit solution for the equations 
for g(r)  proposed by Perram. (2z~ From (24) and (25) we can write 

1 V(s)e -s 
s l~ (s )  12sr 1 + V(s)e_ ~ (60) 

V(s) = U(s)  
P(s)  (61) 

where N(s)  = T(S)S 3 i--Ii (S + Z,) and P(s)  = [1 - 12~a(s)]s 3 1-[~ (s + zO are 
(n + 1)th- and (n + 3)th-order polynomials, respectively, where n is the 
number of Yukawas. From the form of a(s) [Eqs. (24)] we know that 

n + 8  

P(s)  = 1- I  (s - th) (62) 
4 = 1  
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where/~, are the roots of P(s); in general, some of the roots are real while 
others may form complex conjugate pairs for small enough p and suffi- 
ciently large s, e-~V(s) < 1 ; the following expansion of (60) converges 

,= ~ - ~  ( -  1)'- ~[V(s)]'e -~ (63) 

Now, calling Wz(r) the inverse Laplace transform of [V(s)] ~, we get, with 
Ol(x) = 0 for x <~ 0 and O~(x) = 1 for x > 0, 

rg(r) = ( -  I) t-z ~-~ [W,(r - l)O(r - 1)1 (64) 

The explicit form of W~(r) can be obtained from standard analysis (Brom- 
which-Laplace inversion formula) 

11+3  

W(r) = ~ Residue{[V(s)]Ze ~r} 
i = 1  

n + 3  

= ,__~= ~u,lim 71, -11)t lfls][d~ ~-~ (sif(s}- #J eqN(s)]'(12D~ (65) 

where 

N(s) = "r(s)s 3 I - I  (s + z,) (66) 
1 ~ 1  

Expanding the polynomial P(s) around its solutions, we easily get 
n + 3  

W,(r ) ,=__ (I - 1)t ~d-~J e , [ ~ ]  (67) 

from which 

I ( - I ) ' - I " ~  a [ d ~  ' - I  _u.(,_,,[N(t~,)lz~,. 
rg ( r )  = , : i  12~ (1--- ~ ,=i km~J t~'e' [ ~ ]  v~r - l )  (68) 

where we have used the standard formula of calculus for residues of/-order 
poles, which implies that we are restricted to the situation in which ~ ~ t~J' 
(i r j).  The expansion formula (68) is rather rapidly convergent. Therefore, 
instead of giving the explicit general derivation of (65), let us just quote the 
first terms: 

n + 3  

W (r) = [U(.Oe"'qP'(.Ol., 
i = 1  

,+3. ou,r[ N(t~,)l~[ N'(I~,) 
W2(r)  = (12e) 2 ~ w,~ [ p ~ ) ]  [r + 2 N(~,) 

i = l  

(69) 

P"(t~')] (70) 
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